- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Lumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463-465.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Veidis, M. V., Dockum, B., Charron, F. F. Jr, Reiff, W. M. & Brennan, T. F. (1981). *Inorg. Chim. Acta*, **53**, L197–L199.
- Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153-1172.

Acta Cryst. (1995). C51, 361-364

# $[Ru(\eta^{5}-C_{5}H_{5})(\eta^{4}-C_{5}H_{4}O)\{As(CH_{3})_{3}\}]PF_{6}$ and [Ru(\eta^{5}-C\_{5}H\_{5})(\eta^{4}-C\_{5}H\_{4}O)-{As(C\_{6}H\_{5})\_{3}}]PF\_{6}

KARL KIRCHNER AND ROLAND SCHMID

Institute for Inorganic Chemistry, Technical University of Vienna, Getreidemarkt 9, A-1060 Vienna, Austria

KURT MEREITER

Institute for Mineralogy, Crystallography and Structural Chemistry, Technical University of Vienna, Getreidemarkt 9, A-1060 Vienna, Austria

(Received 13 July 1993; accepted 23 May 1994)

### Abstract

As part of studies on the syntheses and chemical reactions of ruthenium  $\eta^5$ -cyclopentadienyl- $\eta^4$ cyclopentadienone complexes, the crystal structures of the two title compounds,  $(\eta^4$ -cyclopentadienone) $(\eta^5$ cyclopentadienyl)(trimethylarsine)ruthenium hexafluorophosphate and  $(\eta^4$ -cyclopentadienone) $(\eta^5$ -cyclopentadienyl)(triphenylarsine)ruthenium hexafluorophosphate, have been determined from single-crystal Xray diffraction data. The metal complexes of the two title compounds are both of a bent-sandwich type, but differ somewhat in conformation. The cyclopentadienone moieties of both compounds are distinctly puckered at the C(2) and C(4) atoms, and the C=O groups are bent away from the Ru atom. Ru-C bond lengths vary from 2.137 (4) to 2.248 (4) Å in (I), and from 2.159 (4) to 2.271 (4) Å in (II). Ru—As bond lengths are 2.491 (1) Å in (I) and 2.512(1) Å in (II).

### Comment

Cyclopentadienone in the free state is a highly unstable molecule which dimerizes rapidly but can be stabilized by coordination with transition metals. The accessibility of such complexes is limited, however, since they can be obtained only *via* reactions on certain precursor complexes. The syntheses and reactions of two Ru complexes containing unsubstituted cyclopentadienyl (CP) and cyclopentadienone (CPD), [Ru( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)( $\eta^4$ -C<sub>5</sub>H<sub>4</sub>O)]<sub>2</sub>(PF<sub>6</sub>)<sub>2</sub> (Kirchner & Taube, 1991) and [Ru( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)( $\eta^4$ -C<sub>5</sub>H<sub>4</sub>O)(CH<sub>3</sub>CN)]PF<sub>6</sub> (Kirchner, Taube, Scott & Willett, 1993), have been described recently. It was shown that these complexes react with various nucleophiles by substitution on either the metal centre, the CP or the CDP ligand, thus yielding a range of new complexes. While the nucleophiles P(CH<sub>3</sub>)<sub>3</sub> and P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> were found to attack the two complexes by substitution on the CP or CPD ligands (Kirchner, Mereiter, Schmid & Taube, 1993), the corresponding arsines displayed ligand substitution on the metal centre.

A view of the metal complex (I) is shown in Fig. 1. The two  $C_5$  rings adopt a staggered conformation in which the cyclopentadienone molecule is oriented so that its C=O group is almost coplanar with the Ru-As bond, as can be seen from the dihedral angle As-Ru-C(6)—O of  $0.7 (4)^{\circ}$ . This and the specific orientation of the  $As(CH_3)_3$  ligand cause complex (I) to have nearly mirror symmetry, where Ru, As, C(3), C(6), O and C(11) are approximately in the same plane (0.037 Å r.m.s. deviation of these atoms from the corresponding least-squares plane), while the remaining atoms of the complex lie on either side. In comparison with (I), the triphenylarsine compound (II) (Tables 3 and 4) is less symmetric. Here, the configuration of the two  $C_5$ rings lies between staggered and eclipsed, and the bulky As(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> group is rotated by  $ca 30^{\circ}$  about the Ru—As bond in comparison to the As(CH<sub>3</sub>)<sub>3</sub> group (Fig. 1).



Bond lengths and angles of the Ru complexes in (I) and (II) are similar and agree with the values observed in the related compounds Ru(CP)(CPD)Br,  $[Ru(CP)(CPD)(CH_3CN)]PF_6$  and  $[Ru(CP)(CPD){P (OC_6H_5)_3$ ]PF<sub>6</sub> (Smith, Kwan, Taube, Bino & Cohen, 1984; Kirchner, Mereiter, Schmid & Taube, 1993; Kirchner, Taube, Scott & Willett, 1993). Selected mean bond lengths for (I) and (II), respectively, are:  $\langle Ru - C_{CP} \rangle$  2.203 (3), 2.203 (5) Å;  $\langle Ru - C_{CPD} \rangle$ 2.194 (4), 2.214 (4) Å;  $\langle C--C \rangle_{CP}$  1.410 (5), 1.397 (8) Å;  $(C-C)_{CPD} = 1.429 (6), 1.431 (6) \text{ Å}$ . The CPD molecules of both compounds display typical behaviour: in their butadiene part [C(7)-C(10)] they exhibit a short-longshort pattern of C-C bond lengths with overall mean values of 1.395 (6) Å (short) and 1.415 (7) Å (long); the CPD molecules are distinctly puckered at the atoms C(7) and C(10), with the C=O group bent away from the metal centre (Fig. 1), and with puckering angles of 21.5 (2)° for (I) and 23.1 (2)° for (II), defined as the angles between the least-squares planes through C(7)-C(8)-C(9)-C(10) and C(7)-C(6)(=O)-C(10); the Ru-C bond lengths to C(8) and C(9) are shorter than those to C(7) and C(10) by about 0.1 Å. The angle between the least-squares planes through the CP ring and through the butadiene part of the CPD ring is 34.5 (2)° in (I) and 36.3 (3)° in (II). The corresponding figures for Ru(CP)(CPD)Br, [Ru(CP)(CPD)(CH<sub>3</sub>CN)]PF<sub>6</sub> and [Ru(CP)(CPD){P(OC<sub>6</sub>H<sub>5</sub>)<sub>3</sub>}]PF<sub>6</sub> are 36.2, 36.0 and 36.5°, respectively, and the puckering angles of their CPD molecules 20.6, 18.0 and 23.7°, repectively.

Bond lengths for the two arsine ligands are in good agreement with literature data. The Ru—As bond lengths of 2.491 (1) Å in (I) and 2.512 (1) Å in (II) may



Fig. 1. Perspective ORTEP (Johnson, 1965) plots of the sandwich complexes in (I) and (II) with atom numbering. Displacement ellipsoids are shown at the 30% probability level. H atoms in (II) have been omitted for clarity.

be compared with 2.516 and 2.536 Å in  $[(\eta-H)_3Ru_3(\eta^3-CC_6H_5)(CO)_7{As(C_6H_5)_3}_2]$  (Rahman, Beanan, Bavaro, Modi, Keister & Churchill, 1984), and 2.448–2.468 Å in marcasite-type RuAs<sub>2</sub> (Kjekshus, Rakke & Andresen, 1977).

### Experimental

The trimethylarsine compound, (I), was prepared from equimolar amounts of  $[Ru(\eta^5-C_5H_5)(\eta^4-C_5H_4O)(CH_3CN)]PF_6$  and As(CH<sub>3</sub>)<sub>3</sub> in nitromethane (Kirchner, Mereiter, Schmid & Taube 1993), and was recrystallized from nitromethane/ether. Compound (II) was obtained in an analogous fashion using As(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> (Kirchner, Taube, Scott & Willett, 1993).

### Compound (I)

Crystal data

 $[Ru(C_5H_5)(C_5H_4O)-$ Mo  $K\alpha$  radiation  $\lambda = 0.71069 \text{ Å}$  $As(CH_3)_3$ ]PF<sub>6</sub>  $M_r = 511.24$ Cell parameters from 25 Monoclinic reflections  $\theta = 14-26^{\circ}$  $P2_{1}/c$  $\mu = 3.03 \text{ mm}^{-1}$ a = 8.421 (2) Å T = 294 Kb = 11.421 (2) Å Prism c = 17.431 (4) Å  $0.50\,\times\,0.33\,\times\,0.22$  mm  $\beta = 93.84 (1)^{\circ}$ Yellow V = 1672.7 (6) Å<sup>3</sup> Z = 4 $D_x = 2.030 \text{ Mg m}^{-3}$ 

Data collection Philips PW1100 diffractometer  $\theta/2\theta$  scans Absorption correction: by Gaussian integration from crystal shape  $T_{min} = 0.46$ ,  $T_{max} = 0.52$ 4087 measured reflections 3657 independent reflections

#### Refinement

Refinement on F R = 0.026 wR = 0.030 S = 1.31 2888 reflections 232 parameters H-atom positions refined with riding model (C—H 0.96 Å) w =  $[\sigma^2(F_o) + 0.0002F_o^2]$  $(\Delta/\sigma)_{max} < 0.01$ 

## Compound (II) Crystal data

 $\begin{array}{l} [Ru(C_5H_5)(C_5H_4O)-\\ \left\{As(C_6H_5)_3\right\}]PF_6 \end{array}$ 

Yellow 2888 observed reflections  $[F_o > 6\sigma(F_o)]$   $R_{int} = 0.011$   $\theta_{max} = 27^{\circ}$   $h = 0 \rightarrow 10$  $k = 0 \rightarrow 14$ 

- $l = -22 \rightarrow 22$ 3 standard reflections frequency: 120 min intensity decay: 1.2%
- $\begin{array}{l} \Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction:} \\ SHELX76 \ ({\rm Sheldrick,} \\ 1976) \\ {\rm Extinction \ coefficient:} \\ \chi = 0.00204 \ (7) \\ {\rm Atomic \ scattering \ factors} \\ {\rm from \ International \ Tables} \\ {\rm for \ X-ray \ Crystallography} \\ (1974, \ {\rm Vol. \ IV, \ Table} \\ 2.2B) \end{array}$

Mo  $K\alpha$  radiation  $\lambda = 0.71069$  Å

## KARL KIRCHNER, ROLAND SCHMID AND KURT MEREITER

| $M_r = 697.45$                             | Cell parameters from 48                             | F(4')                                                                              | 0.788 (2)              | 0.376 (1)              | -0.047 (1)              | 0.116 (7)             |
|--------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|------------------------|------------------------|-------------------------|-----------------------|
| Monoclinic                                 | reflections                                         | F(5')                                                                              | 0.742 (1)              | 0.395 (1)              | 0.0761 (9)              | 0.113 (7)             |
| $P2_{1}/c$                                 | $\theta = 6-22^{\circ}$                             | F(6')                                                                              | 0.610(1)               | 0.236(1)               | 0.0664 (9)              | 0.116 (7)             |
| a = 8.076 (1) Å                            | $\mu = 1.967 \text{ mm}^{-1}$                       |                                                                                    |                        |                        |                         |                       |
| b = 24.399 (4) Å                           | T = 295  K                                          | Table 2                                                                            | 2. Fractional          | atomic cool            | rdinates and            | equivalent            |
| c = 13.337 (2) Å                           | Plate                                               | is                                                                                 | otronic displa         | cement nara            | meters $(Å^2)$ for      | $r(\mathbf{H})$       |
| $\beta = 96.52 (1)^{\circ}$                | $0.35 \times 0.28 \times 0.07$ mm                   | isotropic displacement parameters (A ) for (II)                                    |                        |                        |                         |                       |
| V = 2611.0 (7) Å <sup>3</sup>              | Yellow                                              | $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$ |                        |                        |                         |                       |
| Z = 4                                      |                                                     |                                                                                    | r                      | v                      | 7                       | llan                  |
| $D_r = 1.774 \text{ Mg m}^{-3}$            |                                                     | Ru                                                                                 | 0.60922 (4)            | 0.37680 (1)            | 0.20020 (2)             | 0.0361 (2)            |
|                                            |                                                     | C(1)                                                                               | 0.8523 (6)             | 0.3781 (3)             | 0.2937 (4)              | 0.070 (3)             |
| Data collection                            |                                                     | C(2)                                                                               | 0.8806 (6)             | 0.3882 (3)             | 0.1951 (5)              | 0.080 (4)             |
| Dulu conection                             |                                                     | C(3)                                                                               | 0.7956 (7)             | 0.4374 (3)             | 0.1652 (4)              | 0.082 (4)             |
| Philips PW1100 diffractom-                 | 3220 observed reflections                           | C(4)                                                                               | 0.7175 (7)             | 0.4570 (2)             | 0.2470 (4)              | 0.076 (4)             |
| eter                                       | $[F_{\alpha} > 6\sigma(F_{\alpha})]$                | C(5)                                                                               | 0.7530 (7)             | 0.4200 (2)             | 0.3254 (4)              | 0.070 (3)             |
| $\theta/2\theta$ scans                     | $R_{int} = 0.010$                                   | C(6)                                                                               | 0.3347 (5)             | 0.3272 (2)             | 0.1216 (3)              | 0.047 (2)             |
| Abcomption correction:                     | $A = 25^{\circ}$                                    | C(7)                                                                               | 0.4995 (5)             | 0.3107 (2)             | 0.0936 (3)              | 0.043 (2)             |
| Absorption confection.                     | $U_{\text{max}} = 25$                               | C(8)                                                                               | 0.5615 (5)             | 0.3546 (2)             | 0.0426 (3)              | 0.049 (2)             |
| by Gaussian integration                    | $h = 0 \rightarrow 9$                               | C(9)                                                                               | 0.46/(5)               | 0.4019 (2)             | 0.0607 (3)              | 0.052(3)              |
| from crystal shape                         | $k = 0 \rightarrow 28$                              | C(10)                                                                              | 0.3460 (3)             | 0.3873(2)              | 0.1220(3)               | 0.051(3)              |
| $T_{\rm min} = 0.54, \ T_{\rm max} = 0.87$ | $l = -15 \rightarrow 15$                            | 0<br>Ac                                                                            | 0.2203(3)              | 0.2967(1)              | 0.1413(2)<br>0.34355(3) | 0.008(2)              |
| 4735 measured reflections                  | 3 standard reflections                              | C(11)                                                                              | 0.49009(4)             | 0.32709(2)             | 0.34333(3)<br>0.4544(3) | 0.0313(2)             |
| 4586 independent reflections               | frequency: 120 min                                  | C(12)                                                                              | 0.6869 (5)             | 0.3097(2)<br>0.3398(2) | 0.4344(3)<br>0.5429(3)  | 0.035(2)              |
| 1500 macpendent reneetions                 | intensity decay: 0.8%                               | C(12)                                                                              | 0.8057 (5)             | 0.3255(2)              | 0.6217 (3)              | 0.053 (3)             |
|                                            | intensity decay. 0.8 /                              | C(14)                                                                              | 0.9059 (5)             | 0.2810 (2)             | 0.6127 (3)              | 0.051 (3)             |
|                                            |                                                     | C(15)                                                                              | 0.8913 (5)             | 0.2515 (2)             | 0.5252 (3)              | 0.049 (3)             |
| Refinement                                 |                                                     | C(16)                                                                              | 0.7738 (5)             | 0.2654 (2)             | 0.4463 (3)              | 0.044 (2)             |
| Definement on F                            | $\Delta a = 0.47 a ^{\lambda-3}$                    | C(17)                                                                              | 0.3936 (4)             | 0.2556 (2)             | 0.3251 (3)              | 0.036 (2)             |
|                                            | $\Delta p_{max} = 0.47 \text{ e A}$                 | C(18)                                                                              | 0.4813 (5)             | 0.2149 (2)             | 0.2808 (3)              | 0.044 (2)             |
| R = 0.028                                  | $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm A}$ | C(19)                                                                              | 0.4234 (5)             | 0.1616 (2)             | 0.2760 (3)              | 0.053 (3)             |
| wR = 0.027                                 | Extinction correction:                              | C(20)                                                                              | 0.2775 (6)             | 0.1488 (2)             | 0.3143 (3)              | 0.055 (3)             |
| S = 1.14                                   | SHELX76 (Sheldrick,                                 | C(21)                                                                              | 0.1869 (6)             | 0.1888 (2)             | 0.3549 (3)              | 0.056 (3)             |
| 3220 reflections                           | 1976)                                               | C(22)                                                                              | 0.2434 (5)             | 0.2429 (2)             | 0.3603 (3)              | 0.044 (2)             |
| 345 parameters                             | Extinction coefficient:                             | C(23)                                                                              | 0.346/(4)              | 0.3/22(2)              | 0.4137(3)               | 0.037(2)              |
|                                            |                                                     | C(24)                                                                              | 0.3111 (5)             | 0.4248 (2)             | 0.3795 (3)              | 0.047(2)              |
| H-atom positions refined                   | $\chi = 0.00031$ (4)                                | C(25)                                                                              | 0.2134 (6)             | 0.4591(2)              | 0.4311(3)               | 0.065(3)              |
| with riding model (C—H                     | Atomic scattering factors                           | C(20)                                                                              | 0.1323(0)<br>0.1967(5) | 0.4410(2)              | 0.5109(3)               | 0.000 (3)             |
| 0.96 Å)                                    | from International Tables                           | C(27)                                                                              | 0.1807(5)<br>0.2843(5) | 0.3543 (2)             | 0.5512(3)               | 0.030(3)              |
| $w = [\sigma^2(F_o) + 0.0001F_o^2]$        | for X-ray Crystallography                           | D                                                                                  | 0.2345(3)              | 0.44766 (5)            | -0.15989(9)             | 0.042(2)<br>0.0522(7) |
| $(\Delta/\sigma) < 0.01$                   | (1974 Vol IV Table                                  | F(1)                                                                               | 0 7998 (4)             | 0.3841(1)              | -0.1432(2)              | 0.082(2)              |
|                                            | 2 2B)                                               | F(2)                                                                               | 0.9583 (3)             | 0.4326(1)              | -0.2382 (2)             | 0.090 (2)             |
|                                            | 2.20)                                               | F(3)                                                                               | 0.6871 (3)             | 0.4490 (1)             | -0.2474 (2)             | 0.090 (2)             |
|                                            |                                                     | F(4)                                                                               | 0.7086 (4)             | 0.4629(1)              | -0.0808 (2)             | 0.110 (2)             |
| Table 1. Fractional atomic                 | coordinates and equivalent                          | F(5)                                                                               | 0.9827 (4)             | 0.4451 (1)             | -0.0724 (2)             | 0.116 (3)             |

# Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (I)

# $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$

# Table 3. Selected geometric parameters (Å, °) for (I)

0.5104(1)

-0.1770 (2)

0.087 (2)

0.8678 (3)

|       |             |             |             |            |                                                     | . 0                  | 1 、                                    |           |
|-------|-------------|-------------|-------------|------------|-----------------------------------------------------|----------------------|----------------------------------------|-----------|
|       | x           | у           | Ζ           | $U_{eq}$   | Ru - C(1)                                           | 2.195 (3)            | C(6)—O                                 | 1.219 (5) |
| Ru    | 0.29625 (3) | 0.39181 (2) | 0.23899 (1) | 0.0334 (1) | Ru - C(2)                                           | 2.214 (3)            | C(7) - C(8)                            | 1,389 (6) |
| C(1)  | 0.5041 (4)  | 0.4439 (3)  | 0.3139 (2)  | 0.053 (2)  | $R_{II} \rightarrow C(3)$                           | 2 206 (3)            | C(8) - C(9)                            | 1.413 (7) |
| C(2)  | 0.5577 (4)  | 0.4148 (3)  | 0.2426 (2)  | 0.051 (2)  | $R_{\mu} \rightarrow C(4)$                          | 2.200(3)             | C(9) - C(10)                           | 1.401 (6) |
| C(3)  | 0.4863 (4)  | 0.4920 (3)  | 0.1876 (2)  | 0.049 (2)  | $R_{II} \rightarrow C(5)$                           | 2 191 (3)            | $A_{s} = C(11)$                        | 1 943 (4) |
| C(4)  | 0.3879 (4)  | 0.5713 (3)  | 0.2252 (2)  | 0.051 (2)  | $\mathbf{R}_{\mathbf{u}} \rightarrow \mathbf{C}(6)$ | 2.614 (4)            | $A_{s} = C(12)$                        | 1 937 (4) |
| C(5)  | 0.3977 (4)  | 0.5423 (3)  | 0.3030 (2)  | 0.052 (2)  | $\mathbf{R}_{\mathbf{u}} = \mathbf{C}(0)$           | 2.014(4)<br>2.248(4) | $A_{S} = C(13)$                        | 1.925 (4) |
| C(6)  | 0.0505 (4)  | 0.2561 (3)  | 0.2075 (2)  | 0.057 (2)  | $R_{\rm H} = C(8)$                                  | 2.240(4)             | $P_{F(1)}$                             | 1.525 (1) |
| C(7)  | 0.2140 (5)  | 0.2140 (3)  | 0.1978 (2)  | 0.061 (2)  | $R_{\rm H} = C(0)$                                  | 2.140(4)             | $P_{}F(2)$                             | 1.576 (3) |
| C(8)  | 0.2776 (6)  | 0.2793 (4)  | 0.1401 (2)  | 0.073 (3)  | $R_{\rm H} = C(10)$                                 | 2.137(4)             | $P_{-}F(3)$                            | 1.570 (5) |
| C(9)  | 0.1790 (6)  | 0.3784 (4)  | 0.1268 (2)  | 0.076 (3)  | $R_{\rm H} = \Delta c$                              | 2.241 (4)            | $\mathbf{P} = \mathbf{F}(\mathbf{A})$  | 1.577 (0) |
| C(10) | 0.0556 (5)  | 0.3753 (3)  | 0.1768 (2)  | 0.060(2)   | C(1) $C(2)$                                         | 1 201 (5)            | P = E(5)                               | 1.555 (5) |
| 0     | -0.0577 (3) | 0.2066 (3)  | 0.2376 (2)  | 0.078 (2)  | C(1) = C(2)                                         | 1.371 (3)            | P = F(6)                               | 1.514 (0) |
| As    | 0.16705 (4) | 0.34955 (3) | 0.36042 (2) | 0.0419 (2) | C(1) = C(3)                                         | 1.445 (5)            | P = F(3')                              | 1.505 (5) |
| C(11) | 0.2632 (6)  | 0.4145 (4)  | 0.4556 (2)  | 0.074 (3)  | C(2) = C(3)                                         | 1,408 (5)            | $\mathbf{P} = \mathbf{F}(\mathbf{A}')$ | 1.52(2)   |
| C(12) | -0.0448(5)  | 0.4151 (4)  | 0.3622 (3)  | 0.076 (3)  | C(3) = C(4)                                         | 1.410(3)             | F = F(4')                              | 1.54 (2)  |
| C(13) | 0.1526 (5)  | 0.1880 (3)  | 0.3907 (3)  | 0.069 (3)  | C(4) = C(3)                                         | 1.393 (3)            | $\mathbf{F} = \mathbf{F}(\mathbf{S})$  | 1.30(2)   |
| Р     | 0.7063(1)   | 0.30149 (8) | 0.01187 (5) | 0.0471 (5) | C(0) = C(1)                                         | 1.479(3)             | r = r(0)                               | 1.49 (2)  |
| F(1)  | 0.5433 (3)  | 0.3669 (3)  | -0.0064(2)  | 0.112 (2)  | C(0) = C(10)                                        | 1.405 (5)            |                                        |           |
| F(2)  | 0.8680 (3)  | 0.2348 (2)  | 0.0307(1)   | 0.090 (2)  | C(2)—C(1)—C(5)                                      | 107.7 (3)            | C(7)—C(8)—C(9)                         | 107.4 (4) |
| F(3)  | 0.626(1)    | 0.1771 (5)  | 0.0024 (7)  | 0.150 (4)  | C(1) - C(2) - C(3)                                  | 108.0 (3)            | C(8)—C(9)—C(10)                        | 109.2 (4) |
| F(4)  | 0.734(1)    | 0.2997 (9)  | -0.0753(3)  | 0.126 (4)  | C(2)—C(3)—C(4)                                      | 108.8 (3)            | C(6)—C(10)—C(9)                        | 107.0 (3) |
| F(5)  | 0.793 (1)   | 0.4172 (5)  | 0.0233 (7)  | 0.150 (4)  | C(3)—C(4)—C(5)                                      | 107.4 (3)            | Ru-As-C(11)                            | 118.1 (1) |
| F(6)  | 0.6864 (9)  | 0.2956 (9)  | 0.1003 (3)  | 0.126 (4)  | C(1)—C(5)—C(4)                                      | 108.0 (3)            | Ru—As—C(12)                            | 113.2 (1) |
| F(3') | 0.657 (1)   | 0.215(1)    | -0.0518 (9) | 0.113 (7)  | C(7)—C(6)—C(10)                                     | 102.1 (3)            | Ru—As—C(13)                            | 117.3 (1) |
|       |             |             |             |            |                                                     |                      |                                        |           |

F(6)

| C(10)C(6)O 129.0 (4) C(11)AsC(13)   | 99.3 (2)  |
|-------------------------------------|-----------|
| C(6)C(7)C(8) 108.4 (3) C(12)AsC(13) | 106.9 (2) |

## Table 4. Selected geometric parameters (Å, °) for (II)

| RuC(1)              | 2.203 (4)  | C(11)—C(12)       | 1.384 (5) |
|---------------------|------------|-------------------|-----------|
| RuC(2)              | 2.218 (5)  | C(11)—C(16)       | 1.391 (6) |
| Ru—C(3)             | 2.197 (6)  | C(12)—C(13)       | 1.384 (5) |
| Ru—C(4)             | 2.205 (5)  | C(13)—C(14)       | 1.369 (7) |
| Ru—C(5)             | 2.193 (5)  | C(14)—C(15)       | 1.363 (6) |
| Ru· · ·C(6)         | 2.636 (4)  | C(15)—C(16)       | 1.377 (5) |
| Ru—C(7)             | 2.262 (4)  | C(17)—C(18)       | 1.390 (6) |
| Ru-C(8)             | 2.163 (4)  | C(17)—C(22)       | 1.385 (5) |
| Ru—C(9)             | 2.159 (4)  | C(18)—C(19)       | 1.381 (6) |
| Ru-C(10)            | 2.271 (4)  | C(19)—C(20)       | 1.373 (7) |
| Ru—As               | 2.5123 (6) | C(20)-C(21)       | 1.368 (7) |
| C(1)—C(2)           | 1.382 (8)  | C(21)—C(22)       | 1.395 (6) |
| C(1)—C(5)           | 1.395 (8)  | C(23)—C(24)       | 1.381 (6) |
| C(2)—C(3)           | 1.417 (9)  | C(23)—C(28)       | 1.391 (5) |
| C(3)—C(4)           | 1.405 (8)  | C(24)—C(25)       | 1.385 (6) |
| C(4)—C(5)           | 1.386 (7)  | C(25)—C(26)       | 1.369 (7) |
| C(6)—C(7)           | 1.478 (6)  | C(26)—C(27)       | 1.371 (7) |
| C(6)—C(10)          | 1.473 (7)  | C(27)—C(28)       | 1.378 (6) |
| C(6)—O              | 1.210 (5)  | P—F(1)            | 1.594 (3) |
| C(7)—C(8)           | 1.392 (6)  | P—F(2)            | 1.578 (3) |
| C(8)—C(9)           | 1.416 (6)  | PF(3)             | 1.578 (3) |
| C(9)—C(10)          | 1.398 (6)  | P—F(4)            | 1.581 (4) |
| As—C(11)            | 1.953 (3)  | P—F(5)            | 1.567 (3) |
| As-C(17)            | 1.949 (4)  | P—F(6)            | 1.578 (3) |
| As-C(23)            | 1.944 (4)  |                   |           |
| C(2) - C(1) - C(5)  | 108.7 (5)  | C(7)—C(8)—C(9)    | 108.3 (4) |
| C(1) - C(2) - C(3)  | 107.0 (5)  | C(8)-C(9)-C(10)   | 108.7 (4) |
| C(2)—C(3)—C(4)      | 108.4 (5)  | C(6)-C(10)-C(9)   | 107.0 (4) |
| C(3) - C(4) - C(5)  | 106.9 (5)  | Ru-As-C(11)       | 113.4 (1) |
| C(1) - C(5) - C(4)  | 109.0 (5)  | Ru - As - C(17)   | 121.4 (1) |
| C(7) - C(6) - C(10) | 102.6 (4)  | Ru—As—C(23)       | 113.5(1)  |
| C(7)—C(6)—O         | 129.1 (4)  | C(11)—As— $C(17)$ | 98.5 (2)  |
| C(10)-C(6)-O        | 128.3 (4)  | C(11)—As— $C(23)$ | 100.8 (1) |
| C(6)—C(7)—C(8)      | 107.3 (4)  | C(17)—As—C(23)    | 106.5 (2) |
|                     |            |                   | /         |

For both compounds, data collection, data reduction and cell refinement were carried out using the programs SERVER4, PW115 and LLSQ6 (Mereiter & Völlenkle, 1990). After applying corrections for absorption, both structures were solved by direct methods and refined by full-matrix leastsquares with SHELX76 (Sheldrick, 1976). H atoms were generated in idealized positions (C-H = 0.96 Å). CP, CPD and benzene H atoms were refined as riding on their parent atoms, methyl H atoms of (I) were refined as rigid CH<sub>3</sub> groups. The isotropic displacement parameters of the H atoms in (I) were set to  $1.30 \times U_{eq}$  of the parent C atoms, and in (II), to 1.11  $\times$  U<sub>eq</sub> of the parent C atoms. Disorder in the octahedral PF<sub>6</sub><sup>-</sup> anion of (I) was modelled by allowing split occupancies for four of the F atoms. Site occupation factor for F(3)-F(6) refined to PP = 0.664(5), and for F(3')-F(6') to 1-PP = 0.336 (5). Molecular graphics and tabular matter were produced with Xtal3.2 (Hall, Flack & Stewart, 1992).

Support by Professor Dr A. Preisinger and by the Austrian Research Council FWF (projects 2178 and 8662) is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances and angles involving non-H atoms have been deposited with the IUCr (Reference: KA1055). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Hall, S. R., Flack, H. D. & Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Univs. of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kirchner, K., Mereiter, K., Schmid, R. & Taube, H. (1993). *Inorg. Chem.* 32, 5553–5561.
- Kirchner, K. & Taube, H. (1991). J. Am. Chem. Soc. 113, 7039-7040.
- Kirchner, K., Taube, H., Scott, B. & Willett, R. D. (1993). Inorg. Chem. 32, 1430–1434.
- Kjekshus, A., Rakke, T. & Andresen, A. F. (1977). Acta Chem. Scand. Ser. A, 31, 253–259.
- Mereiter, K. & Völlenkle, H. (1990). SERVER4, PW115 and LLSQ6. PC Programs for Controlling a PW1100 Four-Circle Diffractometer, for Data Reduction and for Unit-Cell Least-Squares Refinement. Technical Univ. of Vienna, Austria.
- Rahman, Z. A., Beanan, L. R., Bavaro, L. M., Modi, S. P., Keister, J. B. & Churchill, M. R. (1984). J. Organomet. Chem. 263, 75–92.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Smith, T. P., Kwan, K. S., Taube, H., Bino, A. & Cohen, S. (1984). Inorg. Chem. 23, 1943–1945.

Acta Cryst. (1995). C51, 364-367

# [CpMoCl(PMe<sub>3</sub>)<sub>3</sub>][BF<sub>4</sub>] and [Cp\*MoCl(PMe<sub>3</sub>)<sub>3</sub>][PF<sub>6</sub>]

JAMES C. FETTINGER, HEINZ-BERNHARD KRAATZ AND RINALDO POLI\*

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA

ARNOLD L. RHEINGOLD

Department of Chemistry, University of Delaware, Newark, DE 19719, USA

(Received 18 January 1994; accepted 2 August 1994)

### Abstract

Chloro $(\eta^5$ -cyclopentadienyl)tris(trimethylphosphine)molybdenum(III) tetrafluoroborate, [MoCl(C<sub>5</sub>H<sub>5</sub>)-(C<sub>3</sub>H<sub>9</sub>P)<sub>3</sub>][BF<sub>4</sub>], was obtained from the oxidation of [MoH(C<sub>5</sub>H<sub>5</sub>)(PMe<sub>3</sub>)<sub>3</sub>] by AgBF<sub>4</sub>, followed by crystallization from dichloromethane. Chloro $(\eta^5$ -pentamethylcyclopentadienyl)tris(trimethylphosphine)molybdenum-(III) hexafluorophosphate, [MoCl(C<sub>10</sub>H<sub>15</sub>)(C<sub>3</sub>H<sub>9</sub>P)<sub>3</sub>]-[PF<sub>6</sub>], was obtained from the reaction of [MoCl<sub>2</sub>-(C<sub>10</sub>H<sub>15</sub>)(C<sub>3</sub>H<sub>9</sub>P)<sub>2</sub>] with TlPF<sub>6</sub> and PMe<sub>3</sub> in dichloromethane. Both cations adopt a four-legged piano-stool arrangement.